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Abstract

Let R = K|[z1,...,x,] be a polynomial ring over a field K and let I be an
ideal of R generated by a set @', ..., % of square-free monomials of degree
two such that the graph G defined by those monomials is bipartite. We study
the Rees algebra R(I) of I, by studying both the Rees cone Ry A’ generated
by the set A" = {e1,...,en,(a1,1),...,(aq,1)} and the matrix C' whose
columns are the vectors in A’. It is shown that C' is totally unimodular. We
determine the irreducible representation of the Rees cone in terms of the
minimal vertex covers of G. Then we compute the a-invariant of R(I).

1 Introduction

Let R = K|z1,...,z,] be a polynomial ring over a field K and let G be a bipartite
graph with vertex set V' = V(G) = {v1,...,v,} and edge set E = E(G). The
edge ideal of G is the square-free monomial ideal of R given by

I =1(G) = ({ziz;| {vi,v;} is an edge of G}) C R,
and the Rees algebra of I is the K-subalgebra:
R(I) = K[{z;z t| v; is adjacent to v;} U{x1,...,z,}] C R[],
where ¢ is a new variable. Consider the set of vectors

A" = {e; + € + eny1|vi is adjacent to vj} U {eq,...,e,} C R
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where e; is the ith unit vector. Here we study R(I) by looking closely at the
matrix C' whose columns are the vector in A’. One of our results proves that C' is
totally unimodular, then as a consequence we derive that the presentation ideal
of R(I) is generated by square-free binomials. As another consequence we give a
simple proof of the fact that R(I) is a normal domain [7].

We are able to determine the irreducible representation of the polyhedral Rees
cone Ry A" generated by A’, see Corollary 4.3. This turns out to be related to the
minimal vertex covers of the graph G and yields a description of the canonical
module of R(I).

By assigning deg(z;) = 1 and deg(¢) = —1, the Rees algebra R(I) becomes a
standard graded K-algebra, that is, it is generated as a K-algebra by elements of
degree 1. Another of our results proves that the a-invariant of R(I), with respect
to this grading, is equal to —(p + 1), where 3y is the independence number of G.
In order to compute this invariant we use the irreducible representation of R, A’
together with a formula of Danilov-Stanley for the canonical module of R([).

2 Preliminaries

Let FF = {z*,...,2%} be a set of monomials of R and let A = (a;;) be the
matrix of order n x ¢ whose columns are the vectors aq,...,a,. We say that the
matrix A is unimodular if all its nonzero r X r minors have absolute value equal
to 1, where r is the rank of A.

Recall that the monomial subring K[F| C R is normal if K[F] = K[F],

where K[F] is the integral closure of K[F] in its field of fractions. The following
expression for the integral closure is well known:

KTF] = K[{s"|a € ZANR; A}, (1)
where Z.A is the subgroup spanned by A and R, A is the polyhedral cone

q
R, A= {Zaiai

=1

a; € Ry for all z}

generated by A = {a,...,a,}. Here R denotes the set of non negative real
numbers. See [2, 3] and [12, Chapter 7] for a thorough discussion of the integral
closure of a monomial subring and how it can be computed. For the related
problem of computing the integral closure of an affine domain see [9, 10].

The next result was shown in [7] if A is the incidence matrix of a bipartite
graph and it was shown in [8] for general A. The proof below, in contrast to that
of [8], is direct and does not make any use of Grébner bases techniques.

Theorem 2.1 If A is a unimodular matriz, then K[F] is a normal domain.



Proof. By Eq. (1) it suffices to prove
ZANRL A= NA.

Let b € ZAN R, A. By Carathéodory’s Theorem [4, I, Theorem 2.3| there are
linearly independent columns «;,, ..., a;, of A, where r = rank(A), such that

r

beRia;, +- -+ Ryay,. (2)
As A is unimodular for each j one has
Ap([o, -+ a3, ]) = Ap([ai, - - ai, 05]) = 1,

where A, (B) denotes the greatest common divisor of all the nonzero r x r minors
of B. Hence by a classical result of I. Heger [6, p. 51] one readily obtains

Z.A:ZCMZ'I @---@Zair.

Therefore
beZoy, + -+ + Zay,. (3)

Since «;,, ..., q;, are linearly independent by comparing the coefficients of b with
respect to the two representations given by (2) and (3) one derives b € NA. Hence
we have shown ZANR; A C NA. The reverse containment is clear. a

3 On the defining matrix of the Rees algebra

Let G be a simple graph. The incidence matriz of G is the matrix whose columns
are the vectors e; + e; such that v; is adjacent to v;. A matrix B is totally
unimodular if each 7 X ¢ minor of B is 0 or £1 for all ¢ > 1. Recall that the
bipartite simple graphs are characterized as those graphs whose incidence matrix
is totally unimodular [6, p. 273].

Next we present the main result of this section and two of its consequences.

Theorem 3.1 Let G be a simple bipartite graph with n vertices and q edges and
let A = (a;j) be its incidence matriz. If er,..., e, are the first n unit vectors in
R and C is the matriz

altl ... alq ey -+ €n
O =
apl ... Qng
| |
obtained from A by adjoining a row of 1’s and the column vectors e, ..., ey, then

C is totally unimodular.



Proof. Suppose that {1,...,m} and {m + 1,...,n} is the bipartition of the
graph G. Let C’ be the matrix obtained by deleting the last m — m columns
from C. It suffices to show that C’ is totally unimodular. First one successively
subtracts the rows 1,2,...,m from the row n 4+ 1. Then one reverses the sign in
the rows m + 1,...,n. These elementary row operations produce a new matrix
C". The matrix C” is the incidence matrix of a directed graph, namely, consider
G as a directed graph, and add one more vertex n+1, and add the edges (i,n+1)
for i = 1,...,m. The matrix C”, being the incidence matrix of a directed graph,
is totally unimodular [6, p. 274]. As the last m column vectors of C” are

€1 —€ntly---,€6m — Entl,
one can successively pivot on the first nonzero entry of e;, —e, 1 fori =1,...,m
and reverse the sign in the rows m +1,...,n to obtain back the matrix C’. Here

a pivot on the entry ¢, means transforming column ¢ of C" into the sth unit
vector by elementary row operations. Since the operation of pivoting preserves
total unimodularity [5, Lemma 2.2.20] one derive that C' is totally unimodular,
and hence so is C'. This proof is due to Bernd Sturmfels, it is simpler than our
original proof. a

Let oy, ..., a4 be the columns of the incidence matrix of a graph G and let I
be its edge ideal. There is an epimorphism of graded algebras

0:B =K1, ,Tnyt1,- s tg] — RI) (25 z;), (85 tz®),
where B is a polynomial ring with the standard grading.

Corollary 3.2 If G is a bipartite graph, then the toric ideal J = ker(yp) has a
universal Grobner basis consisting of square-free binomials.

Proof. It follows from Theorem 3.1 and [8, Proposition 8.11]. 0

Corollary 3.3 ([7]) If G is a bipartite graph and I is its edge ideal, then the
Rees algebra R(I) is normal.

Proof. It follows from Theorem 3.1 and Theorem 2.1. O

4 The irreducible representation of the Rees cone

If 0 # a € R, then the set H, will denote the hyperplane of R” through the
origin with normal vector a, that is,

H, = {z € R"| (z,a) = O}.



This hyperplane determines two closed half-spaces
Hf ={z € R"|(r,a) >0} and H, = {z € R"|(x,a) <0}.

A subset F' C R" is a proper face of a polyhedral cone R, A if there is a supporting
hyperplane H, such that

(i) F=RyANH, #0,
(ii) Ry AC Hf and Ry A ¢ H,.
A proper face F of Ry A is a facet if dim(F) = dim(R A) — 1.

The facets of the Rees cone

In the sequel G is a connected bipartite graph with edge set E(G), vertex set
V =V(G) ={v1,...,v,}, and height of I(G) greater or equal than 2.

The polyhedral cone of R**! generated by the set of vectors
A' = {e; +e; + epy1|vi is adjacent to v;} U {e;|1 <i<n} c R

is called the Rees cone of G and it will be denoted by R, A’. Note that the Rees
cone has dimension n + 1.

A subset C C V is called a minimal vertex cover of G if the face ideal
p = ({z;lv; € C}) is a minimal prime of I(G) and a subset A C V is called
an independent set of G if any two vertices in A are non adjacent. Thus A is a
maximal independent set if and only if V' \ A is a minimal vertex cover.

In order to describe the facets of the Rees cone we need to introduce another
graph theoretical notion. The cone C(G) of G is the graph obtained by adding a
new vertex v, 1 to G and joining every vertex of G to v,,41. If A is an independent

set of C'(G) we define
w=Ya- ¥
v; €A v;EN(A)

where N(A) is the neighbor set of A in C(G) consisting of all vertices of C(G)
that are adjacent to some vertex of A.

Lemma 4.1 Let R, B be the polyhedral cone in R"! generated by the set
B={ei+ej|{vi,v;} € E(G)} U{ei +ent1]|1 <i<n}.
Then F is a facet of Ry B if and only if

(i) F=RyBNH,,, for somel <i<mn, or
(ii) F =Ry BN H,,, where A is a mazimal independent set of C(G).



Proof. =-) Applying [11, Theorem 3.2] to the graph C(G) it follows that we
can write F' as in (i) or we can write F' = R, BN H,, for some independent set
A of C(G) such that the induced subgraph (V U {v,41} \ (AU N(A))) has non
bipartite connected components. Since this induced subgraph is bipartite one has
V U{vny1} = AUN(A), that is, A is a maximal independent set of C(G).

<) If F is as in (i), note G \ {v;} is connected and non bipartite. Hence F
is a facet. Assume F'is as in (ii). First note V U {v,11} = AU N(A) because A
is a maximal independent set of C'(G). Consider the subgraph Ly of C(G) with
vertex set AU N(A) and edge set E(L1) = {z € E(C(G))|zN A # 0}. One can
rapidly verify (by considering a bipartition of G and showing that L; has only
even cycles) that L; is a connected bipartite graph. Therefore F is a facet by
[11, Theorem 3.2]. O

Theorem 4.2 F is a facet of the Rees cone Ry A" if and only if
(a) F =R A'N H, for somel<i<n+1, or

b)) F=R.AN{zecR""| -z, + > v;ec i = 0} for some minimal vertex
cover C of G.

Proof. =) Since the Rees cone is of dimension n + 1, there is a unique a € Z"+!
with relatively prime entries such that F = Ry A'N H, and Ry A" C H. Hence
the entries of a¢ must satisfy a; > 0 for 1 <4 < n. Consider the vector

b= (b)) = (2a1 + an+1,---,2an + ant1, —Ant1)-
Using the equalities

2(e; +ej +eny1,a) = (ei te;,b) if  {v;,v;} € E(G),
2(ej,a) = (e; + ept1,b) if 1<i<m,

we obtain that F' = Ry BN Hy is a facet of Ry B with Ry B C H,'. Thus from
Lemma (4.1) we can write b in one of the following three forms:

Ae; 1<i<n,
b ) AL 1),
) dau for some maximal

independent set A of G,

for some integer A # 0. In the first and second case we get a = ¢; with 1 <7 <n
and a = e, 41 respectively. Now consider the case b = Aa 4 with A C V' a maximal
independent set of G. Note AUN(A) =V U{vp+1} and v,41 ¢ A. Hence the
entries of b satisfy
=X ifv € V\ A,
b; = A ifw; € A,
-\ ifi=n+1.



Thus a; =0 if v; € A. Ifv; € V'\ A, then a; = —ap41. It follows that a, 1 = —1.
Therefore setting C' =V \ A we fall into case (b).
<) It follows using the same type of arguments as above. O

As a consequence we get the irreducible representation of the Rees cone, which

is the main result of this section on polyhedral geometry:

Corollary 4.3 R, A’ is the intersection of the closed halfspaces given by the
linear inequalities

z; >0 1=1,...,n+1,
~Tn41 + Dy ec Ti >0 C' is a minimal vertex cover of G,

and none of those halfspaces can be omitted from the intersection.

Remark 4.4 Below we will give applications of Corollary 4.3. One noteworthy
consequence is that we can use this result to compute the minimal vertex covers
of G using linear programming. Normaliz [2] can in practice be used to determine
the facets of the Rees cone.

The canonical module and the a-invariant

Let I = I(G) be the edge ideal of G. Since the Rees algebra R(I) is a normal
domain and a standard graded K-algebra, according to a formula of Danilov-
Stanley [1, Theorem 6.3.5] its canonical module is the ideal of R(I) given by

wr(ny = ({2f" - -2l o = (a;) € (R A)° NZ™TH,

where (Ry.A’)° is the topological interior of the Rees cone. Thus Corollary 4.3
yields a description of the canonical module of R(I) in terms of halfspaces.

For use below 3y will denote the maximal size of an independent set of G and
ap will denote the height of I(G). Thus n = ag+ By. The integer [y is called the
independence number of G. In algebraic terms [y is the Krull dimension of the
edge ring R/I(G).

Proposition 4.5 Ifa(R(I)) is the a-invariant of R(I) with respect to the grading
induced by deg(xz;) =1 and deg(t) = —1, then

a(R(I)) = =(fo + 1)

Proof. The a-invariant of R(I) can be expressed as

a(R(I)) = —min{ i | (wr(p)): # 0},



see [1]. Let a = (a;) be an arbitrary vector in (R, .A")° N Z"*!. By Corollary 4.3
a satisfies a; > 1 for 1 <¢<n+1 and

—Apt1+ Yy ec i 21

for any minimal vertex cover C' of G. Let C be a vertex cover of G with «q
elements and let A =V \ C. Note 3y = |A|. Hence if m = z* --- 28 ¢*+1 then

deg(m) = a1+ +ap—ant1
= Zai+zai—an+1250+1-
v; EA v; €C

This proves a(R(I)) < —(fo +1). On the other hand using Corollary 4.3 and the
assumption o > 2 we get that the monomial m = z; - - - 2,t* ! is in wr(ry and
has degree By + 1. Thus a(R(I)) > —(Bo + 1). O
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