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Abstract

Let P be the toric ideal of an affine monomial curve over an arbitrary field.
Using a combinatorial-geometric approach, we characterize when P is a com-
plete intersection in terms of certain arithmetical conditions on binary trees.

1 Introduction

Let R = k[x1,...,z,] be a polynomial ring over a field k. Given a subset I of
R we denote its zero set in A} by V(I) and given a subset X C A} we denote
its vanishing ideal in R by I(X). As usual we use z® as an abbreviation for
z{' - z8, where a = (ai,...,a,) € N*. A binomial in R is a difference of two

n
monomials, that is f = 2% — z® for some a,b € N”. An ideal of R generated by

binomials is called a binomial ideal.
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Let d = {dy,...,d,} be a set of distinct positive integers and consider the

monomial curve
D= {@th,... t") c Al|t € k}.

The homomorphism of k-algebras:
¢ R — E[t]; z; — 4

is graded if we set deg(z;) = d; and deg(t) = 1. The image of ¢ will be denoted
by k[I'] and its kernel will be denoted by P. The ideal P is called the toric
ideal of T". Since k[t] is integral over k[['] we have ht(P) = n — 1. By [13,
Proposition 7.1.2], the toric ideal P is generated by binomials. According to [6,
Lemma 3.4], if ged (d) = 1, I is an affine toric variety, that is ' = V(P). If k is
an infinite field, we get I(T") = P, see [13, Corollary 7.1.12]. Note that the ideal
P C R is quasi-homogeneous, i.e., homogeneous if one gives degree d; to variable
x;, and one says that the degree of a quasi-homogeneous binomial z* — ¥ in P is
ardy + -+ + apdy.

The prime ideal P is called a binomial set theoretic complete intersection if
there exists a system of binomials ¢1,...,g,—1 such that P = rad(g1,...,gn—1)
If P=1(g1,...,9n—1) we call P a complete intersection. In [4] it is shown that P
is generated up to radical by n binomials. In positive characteristic, P is always a
binomial set theoretic complete intersection (see [10]). A clever constructive proof
of this result, using diophantine equations and linear algebra, can be found in [1].
If k£ is of characteristic zero, P is a binomial set theoretic complete intersection
if and only if it is a complete intersection by [2, Theorem 4]. As a byproduct, we
will recover this result in Section 2 (Corollary 2.6).

There is a description of complete intersection semigroups of N given in [3],
see also [7] for a generalization of this description to semigroups of arbitrary
dimension. In the area of complete intersection toric ideals there are some re-
cent papers, see the introduction of [11] and the references there. We present
a combinatorial-geometric approach that leads to a new effective criterion for
complete intersection toric ideals of affine monomial curves. This approach is
different in nature to that of [3]. Using the notion of binary tree we are able to
uncover a combinatorial-arithmetical structure of complete intersections. A bi-
nary tree representing a complete intersection will contain essential information
of the curve I' and its semigroup Nd, for instance the defining equations of k[I]
and the Frobenius number of the numerical semigroup Nd (Remark 4.5).

The contents of this paper are as follows. In Section 2, we first claim that
any primary binomial ideal over a field of characteritic zero is radical (Proposi-
tion 2.3). Its proof uses ideas introduced by Shalom Eliahou [4, 5]. Next, using a
result of [6] we observe (Proposition 2.5) that P is a complete intersection if and
only if there are binomials g1, ..., gn—1 in P with g; = 2% — 2% such that



(a) ker(vp) = Zgy + -+ + Zgn—1, where g; = o; — ; and 9 is the linear map
: Z™ — 7 induced by v(e;) = d;,

(b) V(glv agn—laxi) = {0} fori=1,...,n.

For arbitrary binomials, we express the geometric condition (b) in purely com-
binatorial terms using the notion of “binary tree labeled by {1,...,n} and com-
patible with g1,...,9,—1” (Theorem 3.7). This result is interesting in its own
right because it links geometry with discrete mathematics (digraphs) and be-
cause it can be used for arbitrary binomial ideals that need not be toric. Next,
assuming that (b) holds, we characterize condition (a) in terms of arithmeti-
cal conditions on the d;’s (Proposition 4.2). Putting it all together, we present
a combinatorial-arithmetical structure theorem that characterizes when P is a
complete intersection (Theorem 4.3).

2 Binomial ideals and their radicals

Let R = k[z1,...,z,] be a polynomial ring over a field k. Throughout this
section, I will denote a binomial ideal of R generated by {gi,...,g,}, where
gi = z% — 2P for i = 1,...,r. Note that a binomial ideal does not contain
any monomial of R. We denote by Z{gi,...,g,} the subgroup of Z" generated
by g1 = a1 — f1,...,9r = o, — Br. Since rad(I) is again a binomial ideal (see
[8, Theorem 9.4 and Corollary 9.12]), rad([) is generated by {h1,...,hs} where
h; = Y — % for i = 1,...,s. If I is primary, then hi,..., hs can be chosen such
that 27 and z% have no common variables.

Let G be a subgroup of Z™. Following [4], we define an equivalence relation ~¢
on the set of monomials of R by z* ~¢ zf if and only if @« — 3 € G. This relation
is compatible with the product. A non zero polynomial f = > Aqz® is simple
with respect to ~¢ if all its monomials with non zero coefficient are equivalent
under ~¢g. An arbitrary non zero polynomial f in R is uniquely expressed as the
sum of simple polynomials that we call its simple components with respect to G :
f = fi+-+ fm such that f; is simple and if i # j and z®, z® are monomials in
fi and f; respectively, then b,

For convenience we recall the following result about the behaviour of simple
components valid in any characteristic.

Lemma 2.1 ([6, Lemma 2.2]) Given a non zero polynomial f in R, if f € I
then any simple component of f with respect to Z{q,...,gr} belongs to I.

Lemma 2.2 If the characteristic of k is zero, then Z{q1,...,g,} = Z{El, - jl\s}.



Proof. Set Gy = Z{g1,...,9,} and Gg = Z{El, - jz\s}. Since g; € rad(I), then
by Lemma 2.1, any simple component of g; with respect to G5 belongs to rad(I).
Therefore, a; ~¢, B; otherwise rad(I) would contain z®, which is impossible.
This proves that G; C G5. Observe that this holds in any characteristic.

To show the reverse containment, we adapt the argument given in the proof
of [6, Proposition 2.4]. Since h; = z7% — z% € rad(I), then hfm €l form >0
and p an arbitrary prime number. We claim that 2P"% ~g, "%, Consider the
equality

P m
" =S (7 )ty
5=0
If zP™% and zP™% are not in the same simple component of h? " with respect to
(1, then there is a non empty subset S C {1,...,p™—1} such that the polynomial

p=am e e (M)

SES

is a simple component of hfm with respect to Gi. By Lemma 2.1, f € I, and

hence f(l’___,1):0=1+Z(_1)5(p;n>’

SES

a contradiction if the characteristic of £k is zero because (p:l) = 0 mod(p) for
1 < s < p™ — 1. Therefore, zP" 7% ~q, 2P"%, and consequently p™(y; — &;) € G1.
If we pick another prime number g # p and t > 0, repeating the previous
argument, we obtain ¢’(vy; — §;) € G1, and hence ; — §; € G, as required. m|

Proposition 2.3 Assume that the characteristic of k is zero. If I is primary,
then rad(I) = 1.

Proof. Let us show that h; = 27 — 2% belongs to I for all i = 1,...,s. By
Lemma 2.2, we can write

¥i — 0 =m(aqr — Br) + - +np(ar — Br) (ni €Z).

By substituting —g; for g¢; if necessary, we may assume that n,...,n, € N
Expanding the right hand side of the equality

hi peat m r nr
e[l )

readily gives a monomial 7 such that z7h; € I. If h; ¢ I, then (z7)¢ € T for
some £ > 1 because [ is primary, but this is impossible. Thus h; € I, as required.
O



Remark 2.4 Note that Proposition 2.3 fails if the characteristic of the field & is
positive. For example, the primary ideal I = (2! —y'5) C Fs[x, y] is not radical.
In this example, Z{g1,...,9,} # Z{El, - jz\s}. However, one obtains as a direct
consequence of the proof of Proposition 2.3 that if Z{gi,...,9,} = Z{ﬁl, .. ,77?3}
and I is primary, then I = rad(I). This observation is useful in the proof of our
next result, which is one of the keys to our main result (Theorem 4.3).

Proposition 2.5 Let k be an arbitrary field and let B = {g1,...,9n-1} be a set
of binomials in P, the toric ideal of the monomial curve I'. Then P = (B) if and

only if
() ker($) = Z{G1,.. ., Gu 1} and
(b) V(gla s agn—laxi) = {0} fO’I" 1=1,...,n.

Proof. If P = (B) then (a) follows at once from [6, Proposition 2.3], and (b)
follows from [6, Theorem 3.1(b)]. Conversely, if (a) and (b) hold then by [6,
Theorem 3.1], one has rad(B) = P. Let {hi,...,hs} be a set of generators
of P consisting of binomials. Notice that ker (¢) = Z{g1,...,9-} by (a), and
ker (1) = Z{El,...,ﬁs} by [6, Proposition 2.3]. Thus, since (B) is a complete
intersection and its radical is a prime ideal, (B) is radical by Remark 2.4, and
hence P = (B). O

We end this section recovering a result that holds for toric ideals of arbitrary
dimension over a field of characteristic zero, see also [11, Corollary 3.10] for a
recent generalization.

Corollary 2.6 ([2, Theorem 4]) Let p be a toric ideal of R. If p is a binomial
set theoretic complete intersection, then p is a complete intersection.

Proof. Set r = dim R/p. By hypothesis, there are g1, ..., g, binomials of R
such that rad(g,...,gn—r) = p. Since the ideal (g1, ..., gn—) is primary because
it is a complete intersection and its radical is a prime ideal, the result follows
from Proposition 2.3. a

3 Binary trees in binomial ideals

Definition 3.1 A binary tree is a connected directed rooted tree such that: (i)
two edges leave the root and every other vertex has either degree 1 or 3, (ii) if a
vertex has degree 3, then one edge enters the vertex and the other two edges leave
the vertex, and (iii) if a vertex has degree 1, then one edge enters the vertex. The
vertices of degree 1 are called terminal. For convenience we regard an isolated
vertex as a binary tree.



Lemma 3.2 If G is a binary tree with n terminal vertices, then the number of
non-terminal vertices of G is n — 1.

Proof. It follows by induction on n. O
Definition 3.3 A binary tree G is said to be labeled by [1,n] := {1,...,n} if
its terminal vertices are labeled by {1}, ..., {n}. Extending this definition, we

will also consider binary trees with n terminal vertices labeled by arbitrary finite
subsets of N with n elements.

If G is a binary tree labeled by [1,n] and v is a non-terminal vertex of G,

consider vy and vo, the two vertices of G such that
v

v1/\\V2

is a subgraph of GG, and denote by G1, resp. G5, the subtree of G whose root
is v, resp. vo. We denote by ¢;[v] and /3[v] the two disjoint subsets of [1,n]
formed by the union of labels of the terminal vertices of G; and G5 respectively.

Example 3.4 The following binary tree is labeled by [1,5]:

{1} {3} {5}

{2} {4}
and if v is the root of G, then /,[v] = {1,2,4} and ¢3[v] = {3,5}.

The support of a monomial z® (resp. binomial g = z* — z°) is denoted by
supp(z®) = {ila; > 0} (resp. supp(g) = supp(2") U supp(z")).

Definition 3.5 Let B = {g1,...,9n—1} be a set of binomials of R with g; =

z% — 2% supp(z®) Nsupp(¢?) =0, and o; # 0, B; #0foralli =1,...,n —1,

and let G be a binary tree labeled by [1,n]. We say that G is compatible with B

if, denoting by F the set of non-terminal vertices of GG, there is a bijection
B-Lr

such that supp(z®) C £1[f(g;)] and supp(z?) C £o[f(g;)] for alli € {1,...,n—1}.



Example 3.6 The binary tree G labeled by [1, 5] in Example 3.4 is compatible
with the set of binomials

2 4 4 2 7
{g1 = xixy — x325, 92 = 21 — T4, g3 = I3 — Iy, g4 = T2 — T4}

The next result will be used later to prove our main result. It is interesting
in its own right because it characterizes a geometric condition “V(B,z;) = {0}”
that occurs in the study of toric curves (see [4, 6]) in terms of a combinatorial
notion “labeled binary tree”. In addition this result holds for arbitrary binomials
not necessarily inside of a toric ideal.

Theorem 3.7 Let B={g1,...,g9n—1} be a set of binomials of R such that g; =
2% — 2% supp(z®) Nsupp(z®) =0, and o; #0, B; 0 for all i =1,...,n — 1.
Then the following two conditions are equivalent:

(1) V(B,x;) = {0} foralli=1,...,n.
(2) There exists a binary tree G labeled by [1,n] which is compatible with B.

Proof. (1) = (2): Set Vi := {1}, ..., V, := {n} and consider the partition
Fr:={V1,...,V,} of [1,n]. Let us show that there exist V,, 1, ..., Va,_1, subsets
of [1,n], and Fo,...,F,, partitions of [1,n], such that, reindexing g1,...,gn—1
if necessary, the following assertions hold for all i € {1,...,n —1}:

(a) Viyi =V; UV for some V;, Vi, € Fy, j # k.
(b) supp(z®) C V; and supp(z%) C Vj.
(¢) Fit1 = (Fi\{V}, V&}) U {Vi1i}.

Then, if we consider the digraph G with 2n—1 vertices, denoted by vy,...,vo,_1,
where we connect v,,;; with v; and vj, as follows:

/\vn\ﬂ.
\& Vi

whenever V,,1; = V; UV} in (a), it is not hard to see that G is a binary tree
labeled by [1,7n]. The root of G is va,_1, and the set of its non-terminal vertices
is F:={vp41,...,Vop_1}. Moreover, by construction, for all i € {1,...,n — 1},
one has that ¢1[v,1;] = V; and l3[vy4;] = V}, for V; and Vj, in (a). Hence, by (b),
G is compatible with B via the map f: B — F, g; — V4, and (2) will follow.

Let us first construct V41 and F» satisfying (a), (b) and (c¢). We first claim
that for all i € [1,n], there exists an element g; € B such that either supp(z®/) C
Vi or supp(mﬁf) C V; because otherwise, we have that the ith unit vector e; of



A} belongs to V(B,z1,...,%i—1,%it1,...,2T,) which is {0} by (1). Since |Fi| =n
and |B| = n — 1, by the pigeonhole principle there exists an element in B, say
g1, and V;,Vj, € Fy with j # k, such that supp(z®') C V; and supp(z”!) C V4.
Setting Vi, 41 := V; UV, and Fo := (Fi \ {V}, Vi}) U {Viq1}, the statements (a),
(b) and (c) hold for i = 1.

Assume now that for i € {2,...,n—1}, we have constructed V,,41,..., Voyi1
and Fa,...F; such that (a), (b) and (c) hold, and let us construct V,,1; and F;11
satisfying (a), (b) and (c).

Observe first that for all j <1 — 1, supp(g;) is contained in some element of
Fi. Set B; := B\ {g1,-..,9i-1}. We claim that for each V; € F;, there exists
gj € B; such that either supp(z®) C V} or supp(z”%) C Vj. In order to prove
this, we show that if there exists an element in F;, say Vi = {i1,...,in}, that
does not satisfy the claim, then «a := e;; + --- + ¢;, belongs to V(B), which
is a contradiction by (1). Take g; € B. If g; € B;, then supp(z®) ¢ V; and
supp(z%) ¢ Vi by definition of Vi, and hence gjla) = 0. If g; ¢ B;, ie., if
j <14 —1, then supp(g;) is contained in some element of F;, say V;. If t = s, i.e.,
if supp(gj) C Vs, then gj(a) = 1 —1 = 0. Otherwise, since F; is a partition of
[1,n] and V5, V; € F;, one has that V; NV, = 0, and hence supp(g;) N Vs = 0.
Thus, gj(«) = 0, and the claim is proved.

We have proved that for each V; € F;, there exists g; € B; such that either
supp(z®) C Vi or supp(z%) C V. Since |Fi| = n—i+ 1 and |B;i| = n — 1,
and using that F; is a partition of [1,n], we get by the pigeonhole principle that
there exist an element in B;, say g¢;, and V;,V}, € F; such that supp(z®) C V;
and supp(z”) C Vj. Setting Vi, 4; := V; UV, and Fipq = (F\{V}, Vi ) U{Vti},
the statements (a), (b) and (c¢) hold, and we are done.

(2) = (1): The proof is by induction on n, the number of variables. The
result is clear if n = 2. Denoting by v the root of G, we may assume without loss
of generality, that ¢1[v] = [1,r] and ¢3[v] = [r+1,n] for some r € {1,...,n—1}.
Then, if G; and G5 are the two connected components of the digraph obtained
from G by removing the vertex v and the two edges leaving v, one has that G
and G are binary trees labeled by [1,r] and [r + 1,n] respectively. Reindexing
the g;’s if necessary, we may also assume that (G; is compatible with B; :=
{g2,...,g+}, Go is compatible with By := {gr41,...,9n 1}, and g; = z® — 1
with supp(z®) C [1,7] and supp(z®') C [r + 1,n]. Then, supp(g;) C [1,7] if
i=2,...,r,and supp(g;) C [r +1,n] ifi =r+1,...,n — 1. Moreover, applying
the induction hypothesis, one has that V(By,z;) = {0} for alli = 1,...,r, and
V(Ba,x;) = {0} for alli = r+1,...,n. Fixi € [1,n] and take a € V(B,x;).
The result will be proved if we show that ¢ = 0. By symmetry, we may assume
that 1 < ¢ < r. The vector a = (aq,...,a,) can be decomposed as a = b + c,
where b = (aq,...,a,,0,...,0). Then b € V(By,z;), and hence b = 0. On the



other hand, gi(a) = 0 implies that a; = 0 for some j € {r + 1,...,n}. Thus
¢ € V(By,z;) which is {0}, and hence a = 0, as required. O

4 Complete intersections

Let d = {dy,...,d,} be a set of distinct positive integers, and consider the mono-
mial curve I' C A} and the toric ideal P C k[z1,...,%,] defined in the introduc-
tion. The exact sequence

0 —s ker()) — Z" 57— 0; e v d;

is related to P as follows. If ¢ = 2% — 2° is a binomial, then g € P if and only if
a—b € ker(¢).

Given a binomial ¢ = 2% — 2%, we set § = a — b. If a = (o) € Z7, its
support is given by supp(a) = {ila; # 0}. Any o € Z™ can be written as
a = at —a, where o™ and o~ are vectors in N* with disjoint support. If
S C N"| the subsemigroup (resp. subgroup) of N (resp. Z") generated by S will
be denoted by NS (resp. Z5S).

Definition 4.1 Let G be a binary tree labeled by [1,n], and consider a set of
vectors in Z™, W = {w,...,w,_1}. We say that G is compatible with W if G is
compatible with the set of binomials {x“’z+ —g%i;i=1,...,n—1}.

Proposition 4.2 Let G be a binary tree labeled by [1,n] and denote by F the
set of its non-terminal vertices. The following two conditions are equivalent:

(1) There exist vectors wy,...,w,—1 € Z"™ such that G is compatible with W =
{wi,...,wy—1}, and ker(yp) = ZW.
(2) For allv € F,

ged(dy, j € L[v]) ged(dy, j € L2[v])
ged(dy, j € ¢i[v] U 4a[v])

e N{d;, j € t,[v]} NN{d;, j € b5[v]}.

Proof. Let v be the root of GG, and consider G; and G5, the two components
of the digraph obtained from G by removing the vertex v and the two edges
leaving v. We may assume that ¢1[v] = [1,7] and lo[v] = [r + 1,n] for some
1 <r <n—1. Then G; and Gy are binary trees labeled by [1,r] and [r + 1,n].
The result is clear if n = 2. We will prove both implications by induction on n.
(1) = (2): Reindexing the w;’s if necessary, we may assume that w,_; is the
element of W associated to v through the map that makes G compatible with W,



and that Wi = {wy,...,w,—1} and Wy = {w,,...,w,_o} are the set of vectors
in W such that G; is compatible with W; for ¢ = 1,2. There is a decomposition
Z" = Z" & Z"", where Z" = Z" x {0}*" and Z"" := {0}" x Z"". Consider
the linear map ,: Z"™ — Z induced by 9 (e;) = d; if 1 < i < r and 9 (e;) = 0 if
r < i <mn,and the map 1, = ¢» —1p;. Let 1/, (resp. 12) be the restriction of 1,
(resp. 1/)2) to Z" (resp. Z™ 7). We claim that ker(v;) = ZW; and ker(py) = ZWo.
By symmetry it suffices to prove the first equality. Clearly one has ZW; C ker (1)
because supp(w;) C [1,r] for 1 < ¢ < r. To show the reverse inclusion take
a € ker(1p1) C Z". Since « € ker(yp) = ZW we can write

o= (A1w1 +---+ )\r_lw,«_l) + ()\,uw,« +---+ )\n_gwn_g) + Ap—1Wp—1 ()\Z' € Z).

Hence 0 = 1 (« ) Py (@) = Ap-19 (Wn-1) = Ap_1%1 (w, ;). In the last equality
we use supp(w,_;) C [1,7] and supp( ) Clr+1 n]] As iy (wl_ ) # 0 we
get A, 1 = 0. Therefore AWy + -0+ An,an,Q = 0. This prove that a € ZWh,
as required. Set

d=ged(dy,...,dy), d =gcd(dy,...,d.), d" =ged(dyi1,...,dn),
d:{dla"'adn}a d,:{dla"'adr}a d”:{dr+17"'7dn}‘

Using induction and the claim we need only show (d'd")/d € Nd' N Nd". For
1<j<randr+1<k<n we can write

dy, d;
L _ 11 . r— L. n—2 n—1
ge] ¥ e = Ajpwi + -+ A% in Yw,_1 + )\]kwr + >‘jk Wp—9 + Ajk Wy 1,
1 nfl . . . . + —
for some )\kj, cen )\kj in Z. We write the last vector in W as wy,—1 = w,_; —w,,_;
and w,—1 = (a1,...,6r,—Qr11,...,—ay). Hence we get

—(djex)/d = Njw,+---+ A?,;an_g — Ny, =
(d]dk)/d = A]k (ar+1dr+1 + -+ andn).
Set h = apy1drs1 + -+ + apdy. If we fix k£ and vary j, we get
ged ((ddy/d), ..., (drdy)/d) = prh (pk € Z) = dipd’ = pghd.

Therefore varying k yields ged (dy41d',. .. ,d,d") = hd, p € Z. As a consequence
(d'd")/d = (hdu)/d € Nd". A symmetric argument gives (d'd")/d € Nd', as
required.

(2) = (1): By induction there are Wi = {wy,...,w,—1}, Wo = {wp, ..., wp—2}
such that G; is compatible with W; and ker(z/)l) ZW;. The result will be proved
if we give w,—1 € Z" such that supp(w,_;) C [1,r], supp(w,_,) C [r + 1,n],
and ker(y) = ZW for W =W, UWy U{wy,_1}. By hypothes1s

(dld”)/d =aidy + -+ ardy = arp1dpyy + -0+ apdy,

10



where a; € N for all i. Setting w,_1 := (a1,...,0;,—Gr41,...,—ay), one has that
supp(w;”_;) C [1,r] and supp(w, ;) C [r + 1,n], and hence G is compatible
with W := W, UW, U {w,_1}. To complete the proof it remains to prove the
equality ZW = ker (). Clearly ZW C ker(¢)). To prove the reverse containment
define 03, = (dj/d)ey, — (di/d)e;, 5,k € [1,n]. By [13, Corollary 10.1.10] the set
{ojk|j,k € [1,n]} generates ker(¢)). Thus we need only show that o, € ZW for
all j,k € [1,n]. If j,k € [1,7] or 5,k € [r + 1,n], then o € ker(¢p1) C ZW or
oji € ker(tpo) C ZW. Assume j € [1,7] and k € [r + 1,n]. From the equalities

Sio= > ai((di/d)ej — (dj/d)e;) = (d"[d)ej — (d;/d) D azes,
=1 =1

So = Y ai ((difd")ex — (dr/d")es) = (d [d)ex — (dr/d") Y ase
i=r+1 i=r+1

we conclude
(di/d")S1 = (d;j/d')S2 = ((dr/d)ej — (dj/d)ex) — (djdy,/d'd")ywp_1.
Since S; € ker(1);) C ZW we obtain o, € ZW, as required. O

Theorem 4.3 The toric ideal P is a complete intersection if and only if there
is a binary tree G labeled by [1,n] such that, for all non-terminal vertez v of G,
one has that
ged(dj, j € ti[v]) ged(dy, j € Lo[v])
ged(dy, j € li[v] U ta[v])

€ N{d;, j € ti[v]} NN{d;, j € bs[v]}.

Proof. =) There are binomials ¢1,...,¢,-1 such that P = (¢1,...,9,-1). We
may assume that g; = % — 2% and supp(2®)Nsupp(z?) = 0 for all i. By Propo-
sition 2.5(b) and Theorem 3.7 there exists a binary tree G labeled by [1,n] which
is compatible with {g1,...,gn—1}. Then G is compatible with W = {q1,...,gn—1}
and ker(¢) = Z{g1,...,9n—1} (see Proposition 2.5(a)). Thus applying Proposi-
tion 4.2 we obtain the required conditions.

<) By Proposition 4.2 there is W = {wy,...,w,—1} C Z" such that W is
compatible with G and ker(y) = ZW. Setting g; := 2% — 2% | one has that G

is compatible with {g1,...,9n—1}, and hence, using Theorem 3.7, we get
V(gla"'agn—laxi):{o} (z:l,,n)
Therefore by Proposition 2.5 we deduce the equality P = (g1,...,9n—1)- a

Using a different approach, Delorme characterizes in [3] toric ideals of affine
monomial curves that are complete intersections using a tool that he calls suites
distinguées ([3, Lemme 8]). He then deduces his main result that can also be
obtained from our characterization in terms of binary trees:
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Corollary 4.4 ([3, Proposition 9]) Assume that gcd(d) = 1. Then P is a
complete intersection if and only if, reindexing the d;’s if necessary, there exists
r € {l,...,n—1} such that, settingd' := ged (dy,...,d;), d" .= ged (dyy1,...,dy),

d - .
A <4<

and d; ::{ @ ij _’__;27"< , one has that:
d—,’, ifr <21<n

(a) d eN{d.,,,...,d,}, d" eN{d},...,d.}, and

b) the two toric ideals Py C klz1,...,x;] and Py C klx,11,...,x,| defined by
+
{d1,...,dr} and {dy41,...,d,} respectively, are both complete intersections.

Proof. =) If P is a complete intersection and v is the root of the binary tree
G given by Theorem 4.3, we may assume, reindexing the d;’s if necessary, that
¢i[v] = [1,7] and £o[v] = [r + 1,n] for some r € {1,...,n — 1}. Setting d' :=
ged (dy, ..., d,) and d" := ged (dyyq, ... ,dy), one gets that d'd” € N{dy,...,d,} N
N{dy+1,...,dp} by Theorem 4.3, and (a) follows. Moreover, using the two binary
subtrees of G obtained by removing v and the two edges leaving v, one gets that
(b) holds by applying Theorem 4.3.

<) Conversely, if P; and P, are complete intersections, let G1 and G be the
two binary trees given by Theorem 4.3, denote by v; and vs their roots, and
consider the binary tree G obtained by adding a vertex v and two edges leaving
v, one entering vy, the other entering vo. By (a), the vertex v of G (which is its
root) satisfies the relation in Theorem 4.3, and any other non-terminal vertex of
G satisfies it for being a non-terminal vertex of either G or G2, and hence P is
a complete intersection. O

Remark 4.5 Given di,...,d, such that P is a complete intersection, a binary
tree G labeled by [1,n] such that the arithmetical conditions of Theorem 4.3 are
satisfied encodes the following information:

(i) The generators {gi,...,gn—1} of P and their degrees D1,...,D,_1 can be
obtained as shown in the proofs of Proposition 4.2 and Theorem 4.3.

(ii) The Frobenius number g(S) of the numerical semigroup S = Nd, that is the
largest integer not in S, can be expressed entirely in terms of {dy,...,d,}
when ged (dy, ..., d,) = 1.

This last assertion is a consequence of the followin%. Recall that the quasi-
homogeneous Hilbert series of R/P is Hp(z) = W for some polyno-
mial f € Z[z]. When ged (dy,...,d,) = 1, using that R/P ~ k[['], one can easily
check that Hp(z) = }f(TZz) for some polynomial h € Z[z] of degree g(S)+1. If Pisa
complete intersection, it is well-known that f(z) = (1—2z"1)--. (1 —2z"»-1) where
Dy, ..., D,_1 are the degrees of the minimal quasi-homogeneous generators of P,
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and hence ¢g(S) =Dy +---+ D1 — (dy + -+ dy). Denoting by {vy,...,v,_1}
the set of non terminal vertices of G and using (i), one gets the following formula:

Z gcd iy J € li[vi]) ged(dy, 7 € la]vi]) Zd
ged(dj, § € 4i[vi] U Lo[v;])
Example 4.6 Let k be an arbitrary field, and consider d; = 16, do = 27, d3 = 45

and dy = 56. The corresponding toric ideal P C k[z1,x2,x3,x4] i a complete
intersection because using the following binary tree labeled by [1, 4],

{1} {4y {2} {3}
the arithmetical conditions in Theorem 4.3 are satisfied:

(16)(56) 1)
112 = ———— 1I6NN56N  :  2(56 = T7(16
ged(16, 56) < (56) (16)

(27)(45) (2)
135 = ————~"— 27TNN45N  :  3(45 = 5(27
0= d@n s © (45) 27)

_ged(16,56) ged (27,45)
~ ged(16,27,45,56)

{16,56}N N {27,45}N

—~
=

1(16) + 1(56) = 1(27) + 1(45).

Moreover, the equalities (1), (2) and (3) provide, by Remark 4.5(i), a set of
minimal generators of P:

g1 = 33421 - l“{a 92 = l“g - 9637 g3 = T1T4 — T2X3 -
Finally, by Remark 4.5(ii), the Frobenius number of the numerical semigroup
S = N{16, 27,45, 56} is
g(S) = 112 + 135 + 72 — (16 + 27 + 45 + 56) = 175.

Remark 4.7 Toric ideals of affine monomial curves that are complete intersec-
tions were originally studied by Herzog in his paper [9]. In [9, Proposition 2.1],
he considers the special situation where, after reindexing the d;’s if necessary, one
has that

ged(dy, ..., d;) digy
ged(dy, ..., dit1)

and he wonders in the next remark if this property charaterizes the complete
intersection case. The answer to this question is negative, this was first observed

EN{dl,...,di},ViE{l,...,’rL—l}, (1)
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by K. Watanabe in [14, Remark 1, p. 105]. In terms of binary trees, the situation
in (1) corresponds to the case where #(¢3][v]) = 1 for each non-terminal vertex v
of the binary tree involved in Theorem 4.3. Noting that in Theorem 4.3, one only
needs to consider binary trees satisfying that #(¢1[v]) > #(¢2[v]) for any non-
terminal vertex v, it easily follows that, when n = 3, P is a complete intersection
if and only (1) holds after a suitable reindexing of the d;’s. This does not occur
when n > 4. When n = 4, one has two possible binary trees satisfying that
#(£1[v]) > #(£L2[v]) for any non-terminal vertex v, and one can check that in
Example 4.6, there is no way of indexing the d;’s so that (1) hold. Indeed, for
n > 1, the number 7, of binary trees with n terminal vertices and satisfying
that #(¢1[v]) > #(£2[v]) for any non-terminal vertex v, is given by the following
inductive formula:

3]
T1=T9=1and, foralln >3, 7, = ZTan,j.
i=1
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